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ABSTRACT

Wave propagation in inhomogeneous media has been studied for such diverse applications as propagation of
radiowaves in atmosphere, light propagation through thin films and in inhomogeneous waveguides, flow visualization, and
others. In recent years an increased interest has been developed in wave propagation through shocks in supersonic flows.
Results of experiments conducted in the past few years has shown such interesting phenomena as a laser beam splitting and

spreading.

The paper describes a model constructed to propagate a laser beam through shock-like inhomogeneous media.

Numerical techniques are presented to compute the beam through such media. The results of computation are presented,
discussed, and compared with experimental data.

1. INTRODUCTION

Interest in a medium with a rapidly varying refractive index has been increasing recently partially due to the advent
of supersonic flight, a growing need for better flow visualization systems and a deeper understanding of light propagation
through shocks. In that respect, attempts have been made to explain the refraction phenomenon _and formation of refractive

fringes 2 and to conduct mathematical and experimental analysis of light diffraction on and transmission through plane shock
waves 3'4. Such phenomena as light diffraction 5 and scattering 6'7 on shocks have been observed and reported. Also,

experiments have been performed to determine a normal shock location. 8'9 In view of this development in the experimental
field of shocks visualization and analysis a need has arisen for a deeper understanding of the phenomenon of light propagation
through a highly inhomogeneous medium. Thus, theoretical and computational models to perform numerical analysis have
become important for explaining the recently observed phenomena such as laser beam splitting and broadening.

The purpose of this paper is to present a computational model of a laser beam striking an inhomogeneous body under
a grazing incidence. The model includes the inhomogeneous body, the incident laser beam, and a computational scheme to

propagate the beam through the inhomogeneity under the grazing incidence.
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2. DESCRIPTION OF THE MODEL

To evaluatethe phenomenon of wave propagationthrough inhomogeneous media the following model has been

constructed.The inhomogencous media isassumed to be a penca'ablecircularcylinderwith a cylindricallysymmetric profilc

of the refractiveindex. The radialdistributionof the refractiveindex profilehas a shock-likeprofile.Such a profilehas been
describedin the literature:i0-13

An

n(r)=nl°w+ l+exp( --L--I '-4r-R (1)

where

An : nhig h -- nlo w ,

n_g_ and nlo w are the maximum and minimum values of the refractive index respectively,

R is the radius of the inhomogeneous cylinder,

r = _x2+y 2 is the radial coordinate,

x and y are Cartesian coordinates of the point of observation,
L is the shock thickness.

Parameters An, R, and L describe the shock-like profile of the refractive index. Figure 1 represents an

example of a 2-dimensional distribution of the refractive index with An = 0.0 l, R = 25A 0 , and L = A o, where A o is the

wavelength in vacuum. In this work we assume that nto w = 1 and L = 0. Thus, when L = 0, we have a homogeneous

cylinder with the index of refraction n = 1 + An placed in another homogeneous medium with the index of refraction equal
to 1.

The cylinder described above is placed in the Cartesian coordinate system with its long axis along the vertical Z axis. It is

illuminated by an incident electromagnetic field with the propagation vector normal to the long axis of the cylinder. The

electromagnetic field is a sheet of light with a constant intensity in the direction along the axis of the cylinder and the

Gaussian intensity profile in the direction normal to it. We will call this sheet of light a laser beam. The electic and magnetic

field vectors are chosen to form a transverse magnetic (TM) wave. Assuming that the direction of propagation is the Y

direction, the intensity of the two dimensional incident field can be written as: _4,_5

tl X2 X2

-jk--
wo ej_(y)e-yky e w2(y) e 2g(Y)eJ_E(x,y,t) = A --

Vw(y)
(2)

where

2 + Yr , y, =--,w( y ) = w o 1+ y----, R( y ) = y --, q)( y ) = ltan-1 Y _W°

Yr y 2 _,

w 0 is the Gaussian beam waist, and /I, is the wavelength of radiation in the medium with refractive index n. Thus

A = _'o/n , where ;t o is the wavelength of radiation in vacuum. Coefficient A is a normalization constant.

(3)

The beam and the cylinder are positioned in such a way that the optical axis of the beam strikes the cylinder at

the grazing incidence at r = R. Selection of the described above configuration permits reduction of a three dimensional

problem of wave propagation to a two dimensional one.

Selection of a small diameter incident Gaussian beam striking a relatively large diameter scatterer gives an

opportunity to separate a scattered field from the incident one. The idea has been implemented for curvature radii

measurements. 16 In that experiment a laser beam impinging at a grazing incidence on a surface produced a diffraction edge
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wave.A reductionofthelaserbeamdiameterledtoaseparationof the edge wave from the incident beam. In the region

where the two fields overlapped, diffraction fringes were observed.

To compute propagation of the incident beam through the medium described a hybrid method has been selected.

The method consists of two parts, propagation through the inhomogeneity and projection of the emerged field into the far

field. The first part of the problem, propagation of an electromagnetic field through an inhomogeneity, is computed using

the finite-difference time domain (FD-TD) method. The wavefront that emerges as result of calculations then is propagated

to a remotely located screen using the Fresnei diffraction equation.

3. FINITE-DIFFERENCE TIME-DOMAIN METHOD

3.1 Introduction

The FD-TD method of computing the electromagnetic wave propagation is based on a simultaneous solution of a

system of the first order partial differential equations derived from Maxwell's time dependent curl equations. ]719

Furthermore, the electric and magnetic field components are positioned in a specific manner described by the Yee algorithm) °

The algorithm permits solving for both electric and magnetic fields in time and space rather than solving for the electric field

along with a wave equation. Those electric and magnetic components are positioned in space in a specific interleaved way

which permits a natural satisfaction of tangential field continuity conditions at the interfaces. Due to the fact that the process

of solving partial differential equations in an unbounded domain using discrete techniques involves a truncation of the

solution domain, an approximated boundary is introduced at a finite distance from a scatterer. This approximate boundary

condition is also called an absorption boundary condition (ABC). The ABCs developed by Mur 21are specially designed to be

used with the FD-TD method. Simultaneous discretization in space and time domains requires temporal stability. The time

domain discretization scheme is stable if the ratio of spatial segmentation distance to the time step size satisfies the Courant

criterion. 22 A straight forward application of a cubical Yee cell in Cartesian coordinates to curved surfaces leads to stair-

case approximation. The resultant stepped edge profile of the approximated surface generates an error. 23 One of the ways to

minimize the problem is to make the cells small.

3.2 Numerical implementation

To compute wave propagation using the FD-TD method the scattered field formulation has been chosen. It is based

on splitting the total field on the known incident and unknown scattered fields, performing the FD-TD computation of the

scattered field, and adding the incident field to it to obtain the total field. For a 2D problem pertaining to the model described

in the previous section such formulation in a case of TM wave leads to the following equations:

. Scattered _Scattered
Oil x 1 c91_z

O t /.to c)y

(4)

o l4 SCattered 1 O E zScattered

_t /1 o Ox

(5)

c3E Scattered 1

tgt Eoe r
lt?H Scattered . Scattered I t?Elncident

tgtl x 1 - e r

"L- -_x Or -_ Er o3t
(6)
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TheFD-TDdiscretizationprocess applied to equations derived from scattered field formulation of TM wave

propagation gives the following:

En+l ,. n
z [t,j) = E z (i,j)

[H_ +1/2 (i + 1/2, j)- H_ +1/2 (i- 1/2, j)
+CE .

I
Er L-Hx n+l/2 (i,j + 1/2)+ Hxn+l/2 (i,j- 1/2)

_ Incident ,.

1-e r or. z _l,j) At ,+--.

e r &

n . . n . .

(7)

Hy +1/2 (i + 1/2, j)= Hy -1/2 (i + 1/2, j)+ Cn[E z (i + 1,j)- E z (i,j)] ,

<8)

(9)

At and C u
where coefficients associated with electric and magnetic fields are correspondingly C e = • A) • A) '

0 0

and A = Ax = Ay. For simplicity, notations for scattered fields in the equations above are omitted. The absorption boundary

conditions of the 2 _ order for the edges of the computational domain and of the 1st order forconditions USed the Mur's theare

comers.

3.3 Computational results

The computational domain is selected to be 60 wavelengths wide in X direction and 80 wavelengths long in the

direction of beam propagation, or Y direction. To minimize a negative effect of the stair case approximation the size of space

steps is chosen to be 0.1 of the wavelength. This resulted in a two dimensional grid with 600 x 800 grid points. 2000 time

steps are used to achieve a steady state of the computed field. The time step is selected according to the Courant criterion to

be equal to 0.99 of the Courant number Atc' The Courant number for a two-dimensional problem is derived from the Courant

stability criterion :

At c- xl_c ° - A.
(10)

where

A = Ax = Ay is the distance between the grid points,

Co = ¢_0 _ 0 is the speed light in vacuum,

_:o and /_o are permittivity and permeability of vacuum respectively.

A two dimensional Gaussian beam having the wavelength 20 = 1/a and the waist radius w 0 = 1020 enters the

computational domain located at a distance Y0 = 20020 from the waist. The cylinder and the Gaussian beam are positioned

in the computational domain as presented in Figure 2. The propagation of the beam is in the Y direction in a such way that its

directional axis passes through the middle of the computational domain. A cylindrical shape body with the refractive index

different from the one of the surrounding medium is placed in the passage of the beam the way described in the previous

sections.

Figure 3 shows propagation of the Gaussian beam through a medium which contains a cylinder with the radius

R = 3020 and the maximum refractive index difference between the cylinder and the surrounding medium An = 0.005.
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Splittingoftheincident Gaussian beam and formation of a double peak and fringes are clearly seen on the picture. The

phenomena are caused by a combination of effects. The most significant are the interference between the incident Gaussian

beam and the diffracted edge wave and scattering by a dielectric cylinder.

Computed effects of the radius of the cylinder and its refractive index on the wave propagation are presented in

Figures 4 through 7. The first two of them, Figures 4 and 5, represent three-dimensional views of Gaussian beams propagated

through cylinders similar to the one used to obtain data shown in Figure 3 but for An = 0.002 and An = 0.008 respectively.

Calculated intensity distributions at the exit from the computational domain for An = 0.002, 0.005, and 0.008 are presented

in Figure 6. Figure 7 shows the effect of a change in the radius R of the cylinder with An = 0.005.

Thus, the calculations have shown that the cyhnder radius R and refractive index difference An have a significant

effect on the relative amplitude of the two main peaks in the intensity distribution. It can be seen from the figures that an

increase in any of these parameters leads to an increase in amplitudes of both peaks. Moreover, in response to changes in

these parameters, the amplitude of the peak to the right changes more rapidly than the one to the left. Another factor that

plays an important role in the intensity distribution is the relative position of the beam and the cylinder.

4. FORMATION OF IMAGE IN THE FAR FIELD

One of the methods to propagate optical fields involves the Fresnel diffraction integral. The integral facilitates

propagation of an optical disturbance from one plane with coordinates _ and rl to another one with coordinates x and y and

located at a distance z from the first. Applying a conventional technique described by Weaver 24 to a two dimensional

problem and maintaining the same coordinate notation as in the previous chapters, the following form of the Fresnel

diffraction equation can be derived:

]2 (x)- _ V (_),exp .(x-_) 2 d_

1

where K is the inclination factor.

(11)

The last expression can be written in terms of the Fourier transform and then solved numerically. Using the

established procedure the following is obtained:

_2(u) e jky Wl(u).e-Jlr_yu2= " = qJl (u). H(u),

where

u/1 (u) and W 2 (u) are the Fourier transforms of W"1 (x) and _2 (x) respectively,

H(u) is the free space transfer function of the system, H(u) = e jky . e -jff'_yu2 .

(12)

Thus, the process of propagating an optical field from one location to another consists of three steps. These steps are

computing the Fourier transform of the field in the original plane, multiplying it by the free space transfer function, and

performing the inverse Fourier transformation of the resultant expression in order to find the field at a new location. To

perform the direct and inverse Fourier transformations a Fast Fourier Transform algorithm, based on the Danielson-Lanczos

Lemma, and computer codes are adopted from available literature on numerical techniques, zs Results of propagation are

presented in the following figures. In the first series of figures the original field is computed using the FD-TD method and

then propagated to distances of 20_ 0 and 40_ 0 . Figure 8 shows the intensity distribution at a distance of 20_ 0 for cases

when the refractive index difference An = 0.005 and An = 0.008. The radius of the cylinder R in both cases remain the

same, R = 303, 0 . When the distance increases the pattern goes through transformations. The sharp changes in the computed

intensity distribution become smoother and eventually disappear.

A phenomenon of beam spreading can be observed by comparing the intensity distributions of an undisturbed or

reference Gaussian beam with the one that emerges after propagating through the cylinder. The beam spreading manifests in

an increase of the spatial width of the curve that forms the intensity distribution. In Figure 9 the beam spreading can be seen
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at the right side of the curve next to the reference Ganssian profile. The cylinder used to compute the data has the following

parameters: R = 3020 and An = 0.008. This phenomenon has already been observed experimentally and published. 9 Figures

l0 to 11 show intensity distributions at a distance of 80:t 0 from the exit from the computational domain from FD-TD

computations with An = 0.005 and An = 0.008 respectively. The beam splitting and broadening are present. Fringes can also

be seen. Increase in the refractive index and/or the radius of the cylinder will lead to enhancement of these phenomena.

5. CONCLUSION

A two-dimensional model and hybrid computational technique have been proposed in this paper to propagate a

Gaussian beam through inhomogeneities with shock-like profiles into the far field under a grazing incident condition.

Computing of the beam propagation through the computational domain is performed by the FD-TD method. The shape of

inhomogeneity is selected to be cylindrical. The resultant fields are then propagated into the far field using the Fresnel

diffraction equation and Fourier transformation. The computed patterns show effects of the refractive index and the radius

of the cylinder. The patterns of intensity distribution of a Gaussian beam in the far field show beam splitting and spreading.

These phenomena have been also observed experimentally. An example of the experimentally obtained intensity profile of a

Gaussian beam after passing a bow shock is shown in Figure 12. The experimental setup used was similar to the one

described in literature. 6'7 To generate bow shock a cylindrical blunt body was inserted in the supersonic flow. A laser beam

sent through the shock under the grazing angle of incidence was projected to a remotely located screen. A CCD camera

captured the image of the beam on the screen and displayed the beam intensity profile on a computer screen. The beam

intensity profile clearly shows beam splitting and formation of fringes. Thus, the model and computational method are

supported by experimental data. Moreover, the phenomenon of beam spreading by a shock may be used as the basis for
shock detection.

An extension of the method proposed in this paper into the three-dimensional domain will be one of the first future

areas of effort. Inhomogeneous bodies then will be spheres with shock-like profiles of the refractive index and large

diameters. To build a three dimensional computational model with geometrical dimensions close to those that appear under

real conditions some shortcomings of the presented method have to be overcome. One of the shortcomings comes from the

limitations of the FD-TD method. Methods based a phase object approximations 26"27may help to eliminate those limitations.

One of the methods, anomalous diffraction approximation, z_'29 is especially attractive when a phase object has it refractive

index close to the one of the surrounding medium. However, the method would have to be modified to include potential

refractive effects of the spheres.

Other areas that will deserve future attention involve the large angle scattering and polarization phenomena. In

order to increase the field of view and evaluate effects associated with large angle scatter, the inclination factor K has to be

closely evaluated. The beam propagation into the far field using the Fresnel diffraction equation is based on a scalar field

formulation. This means that polarization of the incident beam is not taken into account. Development of a vector field

formulation and an associated computational technique represents a certain interest and challenge.

REFERENCES

1. L.Z. Kriksunov and A. E. Pilev, "Refraction of Laser Beams at a Compression Shock," Sov. J. Opt. Technol. 51,

pp. 375-377, 1984.

2. J.A. Waltham, P. F. Cunningham, M. M. Michaelis, R. N. Campbell, and M. Notcutt, "The Application of the

Refractive Fringe Diagnostic to Shocks in Air," Optics and Laser Technol. 19, pp. 203-208, 1987.

3. H.J. Pfeifer, H. D. Vom Stein, and B. Koch, "Mathematical and Experimental Analysis of Light Diffraction on Plane

Shock Waves," Proc. of the 9th Inter. Congress on High Speed Photography, pp. 423-426, 1970.

4. S.I. Hariharan and D. K. Johnson, "Transmission of Light Waves Through Normal Shocks," Appl. Opt. 34,

pp. 7752-7758, 1995.

5. G. Adamovsky and J. Panda, "Light Diffraction on Shocks," Display in the Gallery of Fluid Motion at the 47 e_Annual

Meeting of the Division of Fluid Dynamics of the American Physical Society, November 20-22, 1994, Atlanta, Georgia.

6. J. Panda and G. Adamovsky, "An Experimental Investigation Of Laser Light Scattering by Shock Waves," 33 _ AIAA

Aerospace Science Meeting and Exhibit (January 9-12, 1995, Reno, Nevada), Paper # AIAA 95-0518.

7. J. Panda and G. Adamovsky, "Laser Light Scattering by Shock Waves," Phys. Fluids, 7, pp. 2271-2279, 1995.

NASA TM-113152 6



8. S.I.Hariharan,D.K.Johnson,andG.Adamovsky, "A Theory and Experiments for Detecting Shock Locations," in

Laser Applications and Combustion Diagnostics H, R. J. Locke, ed., Proc. SPIE 2122, pp. 195-205, 1994.

9. G. Adamovsky and D. K, Johnson, "Optical Techniques for Shock Visualization and Detection," in Optical Techniques

in Fluid, Thermal, and Combustion Flow, S. S. Cha and J. D. Trolinger, eds., Proc. SPIE 2546, pp. 348-357, 1995.

10. A.H. Shapiro, The Dynamics and Thermodynamics of Compressible Fluid Flows, Ronald Press, New York, 1953.

11. G.R. Cowan and D. F. Hornig, "The Experimental Determination of the Thickness of a Shock Front in a Gas,"

J. Chem. Phys. 18, pp. 1008-1018, 1950.

12. E.F. Greene, G. R. Cowan, and D. F. Homig, "The Thickness of Shock Fronts in Argon and Nitrogen and Rotational

Heat Capacity Lags," J. Chem. Phys. 19, pp. 427-434, 1951.

13. J. N. Bradley, "Rotational Relaxation and Shock Front Structure," Chapter VII in Shock Waves in Chemistry and

Physics, (pp. 204-220), Methuen & Co., London, 1962.

14. A.E. Siegman, Lasers, University Science Books, Mill Valley, CA, 1986.

15. P.W. Milonni and J. H. Eberly, Lasers, John Wiley & Sons, New York, 1988.

16. P. Langlois, R. A. Lessard, and A. Boivin, "Real-Time Curvature Radii Measurements Using Diffraction Edge Waves,"

Appl. Opt. 24, pp. 1107-1112, 1985.

17. A.Taflove and K. R. Umashankar, 'q'he Finite-Difference Time-Domain Method for Numerical Modeling of

Electromagnetic Wave Interaction with Arbitrary Structures," in Finite Element and Finite Difference Methods in

Electromagnetic Scattering, M. A. Morgan, Ed., (PIER 2, Progress in Electromagnetic Research, Elsevier, New York,

1990 ), pp. 287-373.

18. A. Taflove, Computational Electrodynamics: the Finite-Difference Time-Domain Method, Artech House, Boston, 1995.

19. K.S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method in Electromagnetics, CRC Press, Boca

Raton, Florida, 1993.

20. K. S. Yee, "Numerical Solution of Initial Boundary Value Problems Involving Maxweli's Equations in Isotropic

Media," IEEE Trans. Antennas Propag. AP-14, pp. 302-307, 1966.

21. G. Mur, "Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain

Electromagnetic Field Equations," IEEE Trans. Electromag. Compat. EMC-23, pp. 611-624, 1988.

22. M. A. Morgan, "Principles of Finite Methods in Electromagnetic Scattering," in Finite Element and Finite Difference

Methods in Electromagnetic Scattering, M. A. Morgan, Ed., (PIER 2, Progress in Electromagnetic Research, Elsevier,

New York, 1990), pp. 1-68.

23. M. Fusco, "FDTD Algorithm in Curvilinear Coordinates," IEEE Trans. Antennas Propag. AP-38, pp. 76-89, 1990.

24. H.J. Weaver, Applications of Discrete and Continuous Fourier Analysis, John Wiley & Sons, 1983.

25. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN: The Art of

Scientific Computing, 2"d Edition, Cambridge University Press, 1992.

26. Philip S. Brody and Richard P. Leavitt, "Dynamic Holographic Method of Imaging Objects," Appl. Opt. Z6,

pp. 913-916, 1987.

27. Francis T. S. Yu, Introduction to Diffraction, Information Processing, and Holography, MIT Press, Cambridge MA,

1973.

28. H. C. van de Hulst, Light Scattering by Small Particles, Dover Publications, New York, 1981, (Originally published by

John Wiley & Sons, New York, 1975).

29. G. L. Stephens, "Scattering of Plane Waves by Soft Obstacles: Anomalous Diffraction Theory for Circular Cylinders,"

Appl. Opt. 23, pp. 954-959, 1984.

NASA TM-113152 7



Figure 1: Example of 2D distribution of the refractive index

with An = 0.01, R = 25_,o, and L = _'0.

Figure 3: Results of computation of a Gaussian beam
propagation through inhomogeneous media with

R = 30,q,0and An = 0.005 ; grazing incidence

DomainC°mDutati°nal_ YI

\_,1i r _-_ x!_1 :o"x

.......
Gaussian _ Cvlinde_r

Beam

Figure 2: Top view of the computational domain with
relative orientation of the incident beam and

cylinder; grazing incidence.

Figure 4: Results of computation of a Gaussian beam
propagation through inhomogeneous media with

R = 30)_ 0and An = 0.002 ; grazing incidence.
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Figure5:ResultsofcomputationofaGaussianbeam
propagationthroughinhomogeneousmediawith
R = 30J, 0 ,and An = 0.008 ; grazing incidence.
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Figure 7: Calculated intensity distributions at the exit from
the computational domain for An = 0.005 and
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the computational domain for An = 0.002,
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Figure 8: Intensity distribution at 20Z 0 distance for cases

of the refractive index differences An = 0.005

and An = 0.008, ( R = 30J, 0 ).
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Figure 9: Beam spreading of a Gaussian beam at 20/1, o
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and An = 0.008 ) under grazing incidence.

Figure 11: Intensity distribution at 80,1, 0 distance

obtained using the FD-TD data and Fresnel

diffraction equation; ( R = 30_ o , An = 0.008 ).
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Figure 10: Intensity distribution at 80X 0 distance

obtained using the FD-TD data and Fresnei

diffraction equation; ( R = 30_ o , An = 0.005 ).

Figure 12: Example of an experimentally obtained

intensity profile of a Gaussian beam after

passing through a bow shock.
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13. ABSTRACT (Maximum 200 worde)

Wave propagation in inhomogeneous media has been studied for such diverse applications as propagation of radiowaves in
atmosphere, light propagation through thin films and in inhomogeneous waveguides, flow visualization, and others. In
recent years an increased interest has been developed in wave propagation through shocks in supersonic flows. Results of
experiments conducted in the past few years has shown such interesting phenomena as a laser beam splitting and spread-

ing. The paper describes a model constructed to propagate a laser beam through shock-like inhomogeneous media.

Numerical techniques are presented to compute the beam through such media. The results of computation are presented,

discussed, and compared with experimental data.
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